library(RODBC)
library(dygraphs)
library(xts)
library(ggplot2)
library(plotly)
dygraph - with highlight
dygraph(res_Wide[,1:50]) %>%
dyHighlight(highlightCircleSize = 5,
highlightSeriesBackgroundAlpha = 0.2,
hideOnMouseOut = FALSE)
ggplotly - autoplot timeSeries
autoplot(res_Wide[,c("26074","26032","26056","25945")], facets = Series ~ .)
ggplotly()
ggplot, Stacked bar chart - Weeky Sensors status
head(Weekly_Status)
## Week variable value
## 1 1 Good 18
## 2 2 Good 102
## 3 3 Good 334
## 4 4 Good 472
## 5 5 Good 491
## 6 6 Good 482
p<- ggplot(data=Weekly_Status, aes(x=Week, y=value, fill=variable)) +
geom_bar(stat="identity") +
scale_fill_manual(values=c("#1a9850", "#a6d96a", "#abd9e9", "#d73027"))+
labs(y = "Sensors Count")
ggplotly(p)
ggplot, Stacked bar chart - Daily Sensors issues
head(Daily_Issues[,2:4] )
## Day variable value
## 1 1 Setup_cnt 19
## 2 2 Setup_cnt 4
## 3 3 Setup_cnt 16
## 4 4 Setup_cnt 14
## 5 5 Setup_cnt 5
## 6 6 Setup_cnt 4
p<- ggplot(data=Daily_Issues, aes(x=Day, y=value, fill=variable)) +
geom_bar(stat="identity") +
scale_fill_manual(values=c( "#abd9e9", "#fdae61", "#4575b4"))+
labs(y = "Sensors Count", x="Day of season")
ggplotly(p)